Lesson Summary

EXPONENTIAL NOTATION FOR WHOLE NUMBER EXPONENTS: Let \(m \) be a nonzero whole number. For any number \(a \), the expression \(a^m \) is the product of \(m \) factors of \(a \), i.e.,

\[
a^m = a \cdot a \cdot \ldots \cdot a \quad \text{\(m \) times}
\]

The number \(a \) is called the base, and \(m \) is called the exponent or power of \(a \).

When \(m \) is 1, “the product of one factor of \(a \)” just means \(a \), i.e., \(a^1 = a \). Raising any nonzero number \(a \) to the power of 0 is defined to be 1, i.e., \(a^0 = 1 \) for all \(a \neq 0 \).

1. Complete the table by filling in the blank cells. Use a calculator when needed.

<table>
<thead>
<tr>
<th>Exponential Form</th>
<th>Expanded Form</th>
<th>Standard Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3^5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>((1.9)^2)</td>
<td>(4 \times 4 \times 4)</td>
<td></td>
</tr>
<tr>
<td>(\left(\frac{1}{2}\right)^5)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Why do whole numbers raised to an exponent get greater, while fractions raised to an exponent get smaller?

3. The powers of 2 that are in the range 2 through 1,000 are 2, 4, 8, 16, 32, 64, 128, 256, and 512. Find all the powers of 3 that are in the range 3 through 1,000.

4. Find all the powers of 4 in the range 4 through 1,000.

5. Write an equivalent expression for \(n \times a \) using only addition.

6. Write an equivalent expression for \(w^b \) using only multiplication.
 a. Explain what \(w \) is in this new expression.
 b. Explain what \(b \) is in this new expression.

7. What is the advantage of using exponential notation?

8. What is the difference between \(4x \) and \(x^4 \)? Evaluate both of these expressions when \(x = 2 \).
Lesson Summary

Numerical Expression: A *numerical expression* is a number, or it is any combination of sums, differences, products, or divisions of numbers that evaluates to a number.

Statements like "3 ÷" or "3 ÷ 0" are not numerical expressions because neither represents a point on the number line. Note: Raising numbers to whole number powers are considered numerical expressions as well since the operation is just an abbreviated form of multiplication: $2^3 = 2 \cdot 2 \cdot 2$.

Value of a Numerical Expression: The *value of a numerical expression* is the number found by evaluating the expression.

For example: $\frac{1}{3} \cdot (2 + 4) + 7$ is a numerical expression, and its value is 9.

Problem Set

Evaluate each expression.

1. $3 \times 5 + 2 \times 8 + 2$
2. $(1.75 + 2 \times 0.25 + 5 \times 0.05) \times 24$
3. $(2 \times 6) + (8 \times 4) + 1$
4. $((8 \times 1.95) + (3 \times 2.95) + 10.95) \times 1.06$
5. $((12 + 3)^2 - (18 + 3^2)) \times (4 + 2)$